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Abstract

In this paper we present a construction of stable bundles on a Calabi–Yau manifold using elemen-
tary transformation. As an application, we give examples of stable bundles on certain Calabi–Yau
threefolds.
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1. Introduction

Recently holomorphic vector bundles on Calabi–Yau manifolds and their relation with
D-branes have been extensively investigated. As by now quite familiar, such vector bun-
dles are required to admit Hermitian–Yang–Mills connection for the super-symmetries to
be preserved. By Donaldson–Uhlenbeck–Yau theorem, this is equivalent to the condition
that the vector bundles are stable in the sense of algebraic geometry. According to Vafa’s
extended mirror symmetry conjecture[10], stable bundles on Calabi–Yau manifolds should
correspond to special Lagrangian submanifolds of the mirror manifolds.

For Calabi–Yau manifolds with elliptic fibrations, the method of spectral cover due
to Friedman–Morgan–Witten has been successfully exploited to construct stable SU(n)-
bundles[3,4]. However, the classification of stable bundles on general Calabi–Yau manifolds
is largely an unexplored territory. In this paper we present another strategy for constructing
stable bundles, which works for arbitrary Calabi–Yau manifolds in principle.
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Our construction is based on the notion of elementary transformation, which is defined
to be the kernel of the natural mapH0(D,L) ⊗ OX → L of a line bundleL on a divisor
D ⊂ X. We shall show that certain minimality assumption onD guarantees the stability of
the resulting bundle. This is based on a result in[7], where we started an investigation of
stable sheaves on Calabi–Yau manifolds and their moduli spaces. To illustrate our method,
we construct stable bundles on explicit Calabi–Yau threefolds.

2. Method of construction

Let X be a complex Calabi–Yau manifold of dimensionn. In this section we recall the
notion of elementary transformation to construct vector bundles onX and give a stability
criterion. LetD be an effective divisor onX with the normal bundleND/X = OD(D) and
let i : D ↪→ X denote the inclusion map. LetL be a line bundle onDwhich is generated by
global sections. Then the evaluation mapH0(D,L)⊗OD → L is surjective and we may
extend it to a surjectionH0(D,L)⊗OX → i∗L. It is known that the kernel of this map is
locally free[6] and is called the elementary transformation ofH0(D,L)⊗OX alongi∗L.
We denote its dual bundle byE(D,L). Thus we have the following exact sequence:

0 → E(D,L)∨ → H0(D,L)⊗OX → i∗L → 0. (∗)

LetH be an ample line bundle onX. We define the minimalH-degreedmin(H) as follows:

dmin(H) = min{L ·Hn−1|L ∈ PicX,L ·Hn−1 > 0}.

A line bundleL is said to beH-minimal if L · Hn−1 = dmin(H). Such line bundles are
very useful for the construction of stable bundles as shown in[7]. The following result is a
special case of[7, Lemma 1.4].

Lemma 2.1. Let(X,H) be a polarized smooth projective variety andL anH-minimal line
bundle on D. Let Q be an H-stable torsion-free sheaf withc1(Q) = L onX. Let U be a
non-zero vector space and E a torsion-free sheaf which fits in the exact sequence

0 → U ⊗OX → E → Q → 0.

E is H-stable if the mapU∨ → Ext1(Q,OX), which is obtained by applying the functor
Hom( ,OX) to the sequence, is injective.

The above lemma allows us to construct stable torsion-free sheaves on a given variety.
The next result states that ifX is a Calabi–Yau manifold, thenE(D,L) is a stable vector
bundle.

Theorem 2.2. Let (X,H) be a polarized Calabi–Yau manifold of dimensionn ≥ 2. Let D
be a smooth irreducible effective divisor on X and L a globally generated line bundle on D.
If D is H-minimal, then the bundleE(D,L) is H-stable.
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Proof. By the adjunction formula, the canonical bundle ofD is given byKD
∼= OD(D).

Hence Serre duality yields

H0(D,L)∨ ∼= Hn−1(D,OD(D− L)) ∼= Ext1(OD(D− L),OX)
∨.

By applying the functor HomOX( ,OX) to (∗), we obtain

0 → Ext1(OD(D− L),OX)
∨ ⊗OX → E(D,L) → OD(D− L) → 0,

since we have the following isomorphism, which can be checked by a local calculation:

Ext1OX(L,OX)
∼= OD(D− L).

Let s ∈ H0(D,L) be a non-zero section such that its zero schemeZ is of pure codimension
two inX. Let IZ denote its ideal sheaf inX. The cup product defines the natural pairing

〈 , 〉 : Hn−1(OD(D− L))×H0(L) → Hn−1(OD(D)) ∼= C,

and there exists an exact sequence

0 → OX → IZ(D) → OD(D− L) → 0.

Applying Hom( ,OX) to the sequence above and taking the dual of the induced cohomology
sequence, we obtain the exact sequence

0 → Ext1(IZ(D),OX)
∨ → Ext1(OD(D− L),OX)

∨ → C → 0.

Let U := Ext1(OD(D − L),OX)∨. The last map may be identified with〈 , s〉 and Ext1

(IZ(D),OX)∨ with its kernelUs, hence we have the following commutative diagram:

We have Hom(E(D,L),OX) = H0(E(D,L)∨) = 0, as can be seen by applying the
functor Hom( ,OX) to (∗). It follows that the canonical mapU∨

s → Ext1(IZ(D),OX)
is injective, hence an isomorphism. Therefore we conclude thatE(D,L) is stable by
Lemma 2.1. �
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Corollary 2.3. Let (X,H) be a polarized Calabi–Yau threefold. Assume that there are a
smooth irreducible effective divisor D which is H-minimal and a globally generated line
bundle L on D. Then there exists an H-stable vector bundle E on X with the following
invariants. The rank of E ish0(L) and ith Chern classesc1(i∗L) are

c1(E) = [D], c2(E) = i∗c1(L), c3(E) = i∗L2,

and the cohomologies of E are given by

h0(E) = h0(L)+ h2(L), h1(E) = h1(L), h2(E) = h3(E) = 0.

Proof. LetE(D,L) be as inTheorem 2.2and let

c(E(D,L)) = 1 + c1(E(D,L))+ c2(E(D,L))+ · · · ,
denote the total Chern class ofE(D,L). By (∗), we have the relationc(E(D,L)∨) =
c(i∗L)−1 andci(i∗L) are given as follows:

c1(i∗L) = [D], c2(i∗L) = i∗(D2 − L), c3(i∗L) = i∗(D2 − 2D · L+ L2).

Hence we can computeci(E(D,L)) by the Grothendieck–Riemann–Roch formula

ch(i∗L) = i∗(ch(L) · td(ND/X)
−1),

where ch denote the Chern character and td the Todd class. The cohomologies ofE(D,L)

can be computed easily from (∗). �

3. Stable bundles on Calabi–Yau threefolds

In this section we shall give examples of stable bundles on polarized Calabi–Yau three-
folds (X,H), which appear in Corollary 3.3. For the sake of simplicity, we treat the case
whenL is a multiplemH|D of the restriction ofH toD.

First we assume thatX has Picard numberρ(X) = 1 and that its Picard group is generated
byH . If there exists a smooth divisorD ∈ |H |, thenD is clearlyH-minimal. Assume that
Lm := mH|D is globally generated for somem > 0. ThenTheorem 2.2yields anH-stable
bundleEm of rankrm := h0(D,Lm) which fits in the exact sequence

0 → E∨
m → O⊕rm

X → i∗Lm → 0.

The Chern classes ofEm are given by

c1(Em) = H, c2(Em) = mH2, c3(Em)m
2H3.

The simplest example of such manifolds are quintic hypersurfacesX ⊂ P
4. LetH = OX(1)

denote the restriction of the tautological bundle onP
4. Then one may find smoothD ∈ |H |

andLm is very ample, hence globally generated for allm > 0. Thus we obtain stable
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bundlesEm of rankrm = h0(Lm), c1(Em) = 1, c2(Em) = m andc3(Em) = 5m2. By the
two exact sequences

0 → OP4(m− 5) → OP4(m) → mH → 0,

and

0 → (m− 1)H → mH → i∗Lm → 0,

we computerm = sm − sm−1 − sm−5 + sm−6, wheresm is the integer defined as follows:

sm =




(
m+ 4

4

)
if m ≥ 0,

0 if m < 0.

To see the existence of smoothD for other Calabi–Yau threefolds withρ(X) = 1, e.g.
weighted complete intersections, we recall a result due to Fujita. For a polarized manifold
(X,H) of dimensionn, the delta genus∆ = ∆(X,H) is defined to be the following integer:

∆ = n+Hn − h0(X,H).

In [5], it is proved that if∆ ≤ 2 andHn ≥ 2, then general memberD ∈ |H | is a smooth
divisor. It follows that if(X,H) is a polarized Calabi–Yau threefold with PicX ∼= Z[H ],
∆ ≤ 2 andH3 ≥ 2, then we may choose a smoothD ∈ |H |. Since the adjunction formula
yieldsKD = H|D,D is a minimal surface of general type. It is well-known thatLm = mKD
is globally generated form ≥ 3 under the assumptionK2

D ≥ 2 by a theorem of Reider[9].
Thus, for eachm ≥ 3 we obtain a stable bundleEm of rank rm = h0(mKD). By Kodaira
vanishing and Riemann–Roch,h0(mKD) are calculated as follows:

h0(mKD)=X(OD(mKD)) = 1
2(m(m− 1)K2

D)+ X(OD)
= 1

2(m(m− 1)H3)+ h0(OX(H)),

since Serre duality and Kodaira vanishing yield

X(OD) = −X(OX(−H)) = h0(OX(H)).

We have the following list of weighted complete intersection Calabi–Yau threefolds with
ρ(X) = 1,∆ ≤ 2 andH3 ≥ 2 [8, Theorem (4.1)]:

[1] : (8) ⊂ P(14,4), [2] : (4,6) ⊂ P(13,22,3), [3] : (6) ⊂ P(14,2),

[4] : (2,6) ⊂ P(15,3).

Further, the invariants(h, d) := (h0(OX(H)),H3) are given as(h, d) = [1] : (4,2), [2] :
(3,2), [3] : (4,3), [4] : (5,4), which computesrm = m(m − 1)d/2 + h andci(Em) for
each of the above Calabi–Yau threefolds.

Remark. In the examples above the line bundleL onD extends to a bundle on the ambient
manifoldX. In the case of quintic inP4, we may give an example of stable bundle from a
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globally generatedL which does not extend toX, using the existence of a curve found by
Voisin. As described in[1, Lemma 3.2], we may find a quintic threefoldX and a smooth
hyperplane sectionS which admits a fibrationS → P

1 whose general fiber is a curveC
of degree eight and arithmetic genus five. Sinceh0(OS(C)) = 2 andOS(C) is globally
generated, we obtain a stable rank two bundleE onX with Chern classes

c1(E) = 1, c2(E) = 8,

which fits in the extension

0 → OX → E → IC(1) → 0.

LetNC/X denote the normal bundle ofC in X. Since detNC/X
∼= OC(1) lifts to OX(1)

andH2(OX(−1)) = 0,E is also obtained from the curveC by Serre correspondence.
LetX = P

(1,1,2,2,2) [7] be the Calabi–Yau threefold which has been extensively studied
in the context of mirror symmetry[2].X is obtained as a blow-upp : X → X̂ of X̂, which
is a hypersurface of degree eight in the weighted projective spaceP

(1,1,2,2,2). X admits a
structure of K3-fibrationπ : X → P

1 whose general fiberXt is a quartic surface inP3. Let
E denote the exceptional divisor ofp and letF denote the class ofπ-fiber. It is known that
the Picard group ofX is generated byH := 2F +E andF . Their intersection numbers are
given as follows:

H3 = 8, H2 · F = 4, F2 = 0.

We fix an ample line bundle of the formHq = H + qF for sufficiently largeq. For any
divisorD = αH + βF onX, we have

D ·H2
q = 4((2q+ 2)α+ β) ≡ 0 (mod 4).

Thus we obtaindmin(Hq) = 4 andF isHq-minimal sinceF ·H2
q = 4.

The line bundleHt = H|Xt is very ample on general fiberXt , sorm = h0(mHt) can be
computed for eachm > 0 as follows:

rm = X(OXt (mHt)) = 1
2(m

2H2
t )+ 2 = 2m2 + 2.

Hence for everym > 0 we obtain anHq-stable bundleEm of rank rm = 2m2 + 2 onX
with the following Chern classes:

c1(Em) = F, c2(Em) = mH · F, c3(Em) = 4m2.
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