JOURNAL OF GEOMETRY AND

PHYSICS

A construction of stable vector bundles on Calabi-Yau manifolds

Tohru Nakashima
Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-Shi, Tokyo 192-0397, Japan

Received 5 March 2003

Abstract

In this paper we present a construction of stable bundles on a Calabi-Yau manifold using elementary transformation. As an application, we give examples of stable bundles on certain Calabi-Yau threefolds.

© 2003 Elsevier B.V. All rights reserved.
$J G P$ SC: Differential geometry
MSC: 14J60; 14D20
Keywords: Stable vector bundle; Calabi-Yau manifold; Elementary transformation

1. Introduction

Recently holomorphic vector bundles on Calabi-Yau manifolds and their relation with D-branes have been extensively investigated. As by now quite familiar, such vector bundles are required to admit Hermitian-Yang-Mills connection for the super-symmetries to be preserved. By Donaldson-Uhlenbeck-Yau theorem, this is equivalent to the condition that the vector bundles are stable in the sense of algebraic geometry. According to Vafa's extended mirror symmetry conjecture [10], stable bundles on Calabi-Yau manifolds should correspond to special Lagrangian submanifolds of the mirror manifolds.

For Calabi-Yau manifolds with elliptic fibrations, the method of spectral cover due to Friedman-Morgan-Witten has been successfully exploited to construct stable $\mathrm{SU}(n)$ bundles [3,4]. However, the classification of stable bundles on general Calabi-Yau manifolds is largely an unexplored territory. In this paper we present another strategy for constructing stable bundles, which works for arbitrary Calabi-Yau manifolds in principle.

[^0]Our construction is based on the notion of elementary transformation, which is defined to be the kernel of the natural map $H^{0}(D, L) \otimes \mathcal{O}_{X} \rightarrow L$ of a line bundle L on a divisor $D \subset X$. We shall show that certain minimality assumption on D guarantees the stability of the resulting bundle. This is based on a result in [7], where we started an investigation of stable sheaves on Calabi-Yau manifolds and their moduli spaces. To illustrate our method, we construct stable bundles on explicit Calabi-Yau threefolds.

2. Method of construction

Let X be a complex Calabi-Yau manifold of dimension n. In this section we recall the notion of elementary transformation to construct vector bundles on X and give a stability criterion. Let D be an effective divisor on X with the normal bundle $N_{D / X}=\mathcal{O}_{D}(D)$ and let $i: D \hookrightarrow X$ denote the inclusion map. Let L be a line bundle on D which is generated by global sections. Then the evaluation map $H^{0}(D, L) \otimes \mathcal{O}_{D} \rightarrow L$ is surjective and we may extend it to a surjection $H^{0}(D, L) \otimes \mathcal{O}_{X} \rightarrow i_{*} L$. It is known that the kernel of this map is locally free [6] and is called the elementary transformation of $H^{0}(D, L) \otimes \mathcal{O}_{X}$ along $i_{*} L$. We denote its dual bundle by $E(D, L)$. Thus we have the following exact sequence:

$$
\begin{equation*}
0 \rightarrow E(D, L)^{\vee} \rightarrow H^{0}(D, L) \otimes \mathcal{O}_{X} \rightarrow i_{*} L \rightarrow 0 \tag{*}
\end{equation*}
$$

Let H be an ample line bundle on X. We define the minimal H-degree $d_{\min }(H)$ as follows:

$$
d_{\min }(H)=\min \left\{L \cdot H^{n-1} \mid L \in \operatorname{Pic} X, L \cdot H^{n-1}>0\right\}
$$

A line bundle L is said to be H-minimal if $L \cdot H^{n-1}=d_{\text {min }}(H)$. Such line bundles are very useful for the construction of stable bundles as shown in [7]. The following result is a special case of [7, Lemma 1.4].

Lemma 2.1. Let (X, H) be a polarized smooth projective variety and \mathcal{L} an H-minimal line bundle on D. Let Q be an H-stable torsion-free sheaf with $c_{1}(Q)=\mathcal{L}$ on X. Let U be a non-zero vector space and E a torsion-free sheaf which fits in the exact sequence

$$
0 \rightarrow U \otimes \mathcal{O}_{X} \rightarrow E \rightarrow Q \rightarrow 0
$$

E is H-stable if the map $U^{\vee} \rightarrow \operatorname{Ext}^{1}\left(Q, \mathcal{O}_{X}\right)$, which is obtained by applying the functor $\operatorname{Hom}\left(, \mathcal{O}_{X}\right)$ to the sequence, is injective.

The above lemma allows us to construct stable torsion-free sheaves on a given variety. The next result states that if X is a Calabi-Yau manifold, then $E(D, L)$ is a stable vector bundle.

Theorem 2.2. Let (X, H) be a polarized Calabi-Yau manifold of dimension $n \geq 2$. Let D be a smooth irreducible effective divisor on X and L a globally generated line bundle on D. If D is H-minimal, then the bundle $E(D, L)$ is H-stable.

Proof. By the adjunction formula, the canonical bundle of D is given by $K_{D} \cong \mathcal{O}_{D}(D)$. Hence Serre duality yields

$$
H^{0}(D, L)^{\vee} \cong H^{n-1}\left(D, \mathcal{O}_{D}(D-L)\right) \cong \operatorname{Ext}^{1}\left(\mathcal{O}_{D}(D-L), \mathcal{O}_{X}\right)^{\vee}
$$

By applying the functor $\operatorname{Hom}_{\mathcal{O}_{X}}\left(, \mathcal{O}_{X}\right)$ to $(*)$, we obtain

$$
0 \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{D}(D-L), \mathcal{O}_{X}\right)^{\vee} \otimes \mathcal{O}_{X} \rightarrow E(D, L) \rightarrow \mathcal{O}_{D}(D-L) \rightarrow 0
$$

since we have the following isomorphism, which can be checked by a local calculation:

$$
\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(L, \mathcal{O}_{X}\right) \cong \mathcal{O}_{D}(D-L)
$$

Let $s \in H^{0}(D, L)$ be a non-zero section such that its zero scheme Z is of pure codimension two in X. Let \mathcal{I}_{Z} denote its ideal sheaf in X. The cup product defines the natural pairing

$$
\langle,\rangle: H^{n-1}\left(\mathcal{O}_{D}(D-L)\right) \times H^{0}(L) \rightarrow H^{n-1}\left(\mathcal{O}_{D}(D)\right) \cong \mathbb{C}
$$

and there exists an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{I}_{Z}(D) \rightarrow \mathcal{O}_{D}(D-L) \rightarrow 0
$$

Applying $\operatorname{Hom}\left(, \mathcal{O}_{X}\right)$ to the sequence above and taking the dual of the induced cohomology sequence, we obtain the exact sequence

$$
0 \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z}(D), \mathcal{O}_{X}\right)^{\vee} \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{D}(D-L), \mathcal{O}_{X}\right)^{\vee} \rightarrow \mathbb{C} \rightarrow 0
$$

Let $U:=\operatorname{Ext}^{1}\left(\mathcal{O}_{D}(D-L), \mathcal{O}_{X}\right)^{\vee}$. The last map may be identified with $\langle, s\rangle$ and Ext^{1} $\left(\mathcal{I}_{Z}(D), \mathcal{O}_{X}\right)^{\vee}$ with its kernel U_{s}, hence we have the following commutative diagram:

We have $\operatorname{Hom}\left(E(D, L), \mathcal{O}_{X}\right)=H^{0}\left(E(D, L)^{\vee}\right)=0$, as can be seen by applying the functor $\operatorname{Hom}\left(, \mathcal{O}_{X}\right)$ to $(*)$. It follows that the canonical map $U_{s}^{\vee} \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z}(D), \mathcal{O}_{X}\right)$ is injective, hence an isomorphism. Therefore we conclude that $E(D, L)$ is stable by Lemma 2.1.

Corollary 2.3. Let (X, H) be a polarized Calabi-Yau threefold. Assume that there are a smooth irreducible effective divisor D which is H-minimal and a globally generated line bundle L on D. Then there exists an H-stable vector bundle E on X with the following invariants. The rank of E is $h^{0}(L)$ and ith Chern classes $c_{1}\left(i_{*} L\right)$ are

$$
c_{1}(E)=[D], \quad c_{2}(E)=i_{*} c_{1}(L), \quad c_{3}(E)=i_{*} L^{2}
$$

and the cohomologies of E are given by

$$
h^{0}(E)=h^{0}(L)+h^{2}(L), \quad h^{1}(E)=h^{1}(L), \quad h^{2}(E)=h^{3}(E)=0
$$

Proof. Let $E(D, L)$ be as in Theorem 2.2 and let

$$
c(E(D, L))=1+c_{1}(E(D, L))+c_{2}(E(D, L))+\cdots
$$

denote the total Chern class of $E(D, L)$. By $(*)$, we have the relation $c\left(E(D, L)^{\vee}\right)=$ $c\left(i_{*} L\right)^{-1}$ and $c_{i}\left(i_{*} L\right)$ are given as follows:

$$
c_{1}\left(i_{*} L\right)=[D], \quad c_{2}\left(i_{*} L\right)=i_{*}\left(D^{2}-L\right), \quad c_{3}\left(i_{*} L\right)=i_{*}\left(D^{2}-2 D \cdot L+L^{2}\right)
$$

Hence we can compute $c_{i}(E(D, L))$ by the Grothendieck-Riemann-Roch formula

$$
\operatorname{ch}\left(i_{*} L\right)=i_{*}\left(\operatorname{ch}(L) \cdot \operatorname{td}\left(N_{D / X}\right)^{-1}\right)
$$

where ch denote the Chern character and td the Todd class. The cohomologies of $E(D, L)$ can be computed easily from (*).

3. Stable bundles on Calabi-Yau threefolds

In this section we shall give examples of stable bundles on polarized Calabi-Yau threefolds (X, H), which appear in Corollary 3.3. For the sake of simplicity, we treat the case when L is a multiple $m H_{\mid D}$ of the restriction of H to D.

First we assume that X has Picard number $\rho(X)=1$ and that its Picard group is generated by H. If there exists a smooth divisor $D \in|H|$, then D is clearly H-minimal. Assume that $L_{m}:=m H_{\mid D}$ is globally generated for some $m>0$. Then Theorem 2.2 yields an H-stable bundle E_{m} of rank $r_{m}:=h^{0}\left(D, L_{m}\right)$ which fits in the exact sequence

$$
0 \rightarrow E_{m}^{\vee} \rightarrow \mathcal{O}_{X}^{\oplus r_{m}} \rightarrow i_{*} L_{m} \rightarrow 0
$$

The Chern classes of E_{m} are given by

$$
c_{1}\left(E_{m}\right)=H, \quad c_{2}\left(E_{m}\right)=m H^{2}, \quad c_{3}\left(E_{m}\right) m^{2} H^{3}
$$

The simplest example of such manifolds are quintic hypersurfaces $X \subset \mathbb{P}^{4}$. Let $H=\mathcal{O}_{X}(1)$ denote the restriction of the tautological bundle on \mathbb{P}^{4}. Then one may find smooth $D \in|H|$ and L_{m} is very ample, hence globally generated for all $m>0$. Thus we obtain stable
bundles E_{m} of rank $r_{m}=h^{0}\left(L_{m}\right), c_{1}\left(E_{m}\right)=1, c_{2}\left(E_{m}\right)=m$ and $c_{3}\left(E_{m}\right)=5 m^{2}$. By the two exact sequences

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(m-5) \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(m) \rightarrow m H \rightarrow 0
$$

and

$$
0 \rightarrow(m-1) H \rightarrow m H \rightarrow i_{*} L_{m} \rightarrow 0
$$

we compute $r_{m}=s_{m}-s_{m-1}-s_{m-5}+s_{m-6}$, where s_{m} is the integer defined as follows:

$$
s_{m}= \begin{cases}\binom{m+4}{4} & \text { if } m \geq 0 \\ 0 & \text { if } m<0\end{cases}
$$

To see the existence of smooth D for other Calabi-Yau threefolds with $\rho(X)=1$, e.g. weighted complete intersections, we recall a result due to Fujita. For a polarized manifold (X, H) of dimension n, the delta genus $\Delta=\Delta(X, H)$ is defined to be the following integer:

$$
\Delta=n+H^{n}-h^{0}(X, H)
$$

In [5], it is proved that if $\Delta \leq 2$ and $H^{n} \geq 2$, then general member $D \in|H|$ is a smooth divisor. It follows that if (X, H) is a polarized Calabi-Yau threefold with Pic $X \cong \mathbb{Z}[H]$, $\Delta \leq 2$ and $H^{3} \geq 2$, then we may choose a smooth $D \in|H|$. Since the adjunction formula yields $K_{D}=H_{\mid D}, D$ is a minimal surface of general type. It is well-known that $L_{m}=m K_{D}$ is globally generated for $m \geq 3$ under the assumption $K_{D}^{2} \geq 2$ by a theorem of Reider [9]. Thus, for each $m \geq 3$ we obtain a stable bundle E_{m} of rank $r_{m}=h^{0}\left(m K_{D}\right)$. By Kodaira vanishing and Riemann-Roch, $h^{0}\left(m K_{D}\right)$ are calculated as follows:

$$
\begin{aligned}
h^{0}\left(m K_{D}\right) & =\mathcal{X}\left(\mathcal{O}_{D}\left(m K_{D}\right)\right)=\frac{1}{2}\left(m(m-1) K_{D}^{2}\right)+\mathcal{X}\left(\mathcal{O}_{D}\right) \\
& =\frac{1}{2}\left(m(m-1) H^{3}\right)+h^{0}\left(\mathcal{O}_{X}(H)\right)
\end{aligned}
$$

since Serre duality and Kodaira vanishing yield

$$
\mathcal{X}\left(\mathcal{O}_{D}\right)=-\mathcal{X}\left(\mathcal{O}_{X}(-H)\right)=h^{0}\left(\mathcal{O}_{X}(H)\right)
$$

We have the following list of weighted complete intersection Calabi-Yau threefolds with $\rho(X)=1, \Delta \leq 2$ and $H^{3} \geq 2[8$, Theorem (4.1)]:
$[1]: \quad(8) \subset \mathbb{P}\left(1^{4}, 4\right)$,
$[2]: \quad(4,6) \subset \mathbb{P}\left(1^{3}, 2^{2}, 3\right)$,
[3]: (6) $\subset \mathbb{P}\left(1^{4}, 2\right)$,
[4]: $(2,6) \subset \mathbb{P}\left(1^{5}, 3\right)$.

Further, the invariants $(h, d):=\left(h^{0}\left(\mathcal{O}_{X}(H)\right), H^{3}\right)$ are given as $(h, d)=[1]:(4,2),[2]$: $(3,2)$, [3]: $(4,3),[4]:(5,4)$, which computes $r_{m}=m(m-1) d / 2+h$ and $c_{i}\left(E_{m}\right)$ for each of the above Calabi-Yau threefolds.

Remark. In the examples above the line bundle L on D extends to a bundle on the ambient manifold X. In the case of quintic in \mathbb{P}^{4}, we may give an example of stable bundle from a
globally generated L which does not extend to X, using the existence of a curve found by Voisin. As described in [1, Lemma 3.2], we may find a quintic threefold X and a smooth hyperplane section S which admits a fibration $S \rightarrow \mathbb{P}^{1}$ whose general fiber is a curve C of degree eight and arithmetic genus five. Since $h^{0}\left(\mathcal{O}_{S}(C)\right)=2$ and $\mathcal{O}_{S}(C)$ is globally generated, we obtain a stable rank two bundle E on X with Chern classes

$$
c_{1}(E)=1, \quad c_{2}(E)=8
$$

which fits in the extension

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow E \rightarrow \mathcal{I}_{C}(1) \rightarrow 0
$$

Let $N_{C / X}$ denote the normal bundle of C in X. Since det $N_{C / X} \cong \mathcal{O}_{C}(1)$ lifts to $\mathcal{O}_{X}(1)$ and $H^{2}\left(\mathcal{O}_{X}(-1)\right)=0, E$ is also obtained from the curve C by Serre correspondence.

Let $X=\mathbb{P}^{(1,1,2,2,2)}$ [7] be the Calabi-Yau threefold which has been extensively studied in the context of mirror symmetry [2]. X is obtained as a blow-up $p: X \rightarrow \hat{X}$ of \hat{X}, which is a hypersurface of degree eight in the weighted projective space $\mathbb{P}^{(1,1,2,2,2)} . X$ admits a structure of K3-fibration $\pi: X \rightarrow \mathbb{P}^{1}$ whose general fiber X_{t} is a quartic surface in \mathbb{P}^{3}. Let E denote the exceptional divisor of p and let F denote the class of π-fiber. It is known that the Picard group of X is generated by $H:=2 F+E$ and F. Their intersection numbers are given as follows:

$$
H^{3}=8, \quad H^{2} \cdot F=4, \quad F^{2}=0 .
$$

We fix an ample line bundle of the form $H_{q}=H+q F$ for sufficiently large q. For any divisor $D=\alpha H+\beta F$ on X, we have

$$
D \cdot H_{q}^{2}=4((2 q+2) \alpha+\beta) \equiv 0 \quad(\bmod 4)
$$

Thus we obtain $d_{\text {min }}\left(H_{q}\right)=4$ and F is H_{q}-minimal since $F \cdot H_{q}^{2}=4$.
The line bundle $H_{t}=H_{\mid X_{t}}$ is very ample on general fiber X_{t}, so $r_{m}=h^{0}\left(m H_{t}\right)$ can be computed for each $m>0$ as follows:

$$
r_{m}=\mathcal{X}\left(\mathcal{O}_{X_{t}}\left(m H_{t}\right)\right)=\frac{1}{2}\left(m^{2} H_{t}^{2}\right)+2=2 m^{2}+2
$$

Hence for every $m>0$ we obtain an H_{q}-stable bundle E_{m} of rank $r_{m}=2 m^{2}+2$ on X with the following Chern classes:

$$
c_{1}\left(E_{m}\right)=F, \quad c_{2}\left(E_{m}\right)=m H \cdot F, \quad c_{3}\left(E_{m}\right)=4 m^{2} .
$$

References

[1] H. Clemens, H.P. Kley, On an example of Voisin, Mich. Math. J. 48 (2000) 93-119.
[2] P. Candelas, X. De La Ossa, A. Font, S. Katz, D.R. Morrison, Mirror symmetry for two parameter models-I, Nucl. Phys. B 416 (1994) 679-743.
[3] R. Friedman, J. Morgan, E. Witten, Vector bundles and F theory, Commun. Math. Phys. 187 (1997) 679-743.
[4] R. Friedman, J. Morgan, E. Witten, Vector bundles over elliptic fibrations, J. Alg. Geom. 8 (1999) 279-401.
[5] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser., vol. 155, Cambridge University Press, Cambridge, 1990.
[6] M. Maruyama, Elementary transformations in the theory of algebraic vector bundles, Algebraic Geometry(La Ràbida) Lect. Notes Math. 961 (1982) 241-266.
[7] T. Nakashima, Reflection of sheaves on a Calabi-Yau variety, Asian J. Math. 6 (2002) 567-581.
[8] K. Oguiso, On polarized Calabi-Yau 3-folds, J. Fac. Sci. Univ. Tokyo 38 (1991) 395-429.
[9] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. Math. 127 (1988) 309-316.
[10] C. Vafa, Extending mirror conjecture to Calabi-Yau with bundles, hep-th/9804131.

[^0]: E-mail address: nakashima@comp.metro-u.ac.jp (T. Nakashima).

